CROSSED PRODUCTS BY α -SIMPLE AUTOMORPHISMS ON C^* -ALGEBRAS

Jiajie Hua

East China Normal University

April 2012

- Background
- $oldsymbol{2}$ α -simple action on C^* -algebras

- Background
- 2 α -simple action on C^* -algebras
- 3 Large C^* -subalgebras of crossed products

- Background
- 3 Large C^* -subalgebras of crossed products
- 4 Crossed products by α -simple automorphisms on C^* -algebras

- A classical dynamical system consists of a compact Hausdorff space X together with a homeomorphism σ . Define $\alpha(f)=f\circ\sigma^{-1}$ for $f\in C(X)$. For any C^* -algebra A, an isomorphism from A onto itself is called an automorphism. Denote by $\operatorname{Aut}(A)$ the automorphism group of A. Then $\alpha\in\operatorname{Aut}(C(X))$. Also $\mathbb{Z}\to\operatorname{Aut}(A)$ given by $n\to\alpha^n$ is a group homomorphism.
- Denote by $A \rtimes_{\alpha} \mathbb{Z}$ the crossed products by automorphisms α on C^* -algebras A.
- A dynamical system (X,σ) is said to be minimal if X has no proper closed σ -invariant subset. If (X,σ) is minimal and X is infinite, then $C(X)\rtimes_{\sigma}\mathbb{Z}$ is a unital simple C^* -algebra.

We will use the following convention:

- Let A be a C^* -algebra. We denote by $\operatorname{Aut}(A)$ the automorphism group of A.
- Let A be a C^* -algebra and $\alpha \in \operatorname{Aut}(A)$. We say A is α -simple if A does not have any non-trivial α -invariant closed two-sided ideals.
- Let A be a unital C^* -algebra and T(A) the compact convex set of tracial states of A.

Theorem (F. Putnam)

Let X be a Cantor set and $\sigma: X \to X$ a minimal homeomorphism. Then crossed product $C(X) \rtimes_{\alpha} \mathbb{Z}$ is a simple AT algebras (direct limits of circle algebras) with real rank zero.

Theorem (G. Elliott and D. Evans)

Irrational rotation algebras A_{θ} are simple AT algebras with real rank zero.

Theorem (G. Elliott)

Let A and B be a unital simple AT-algebra with real rank zero. If there is an order isomorphism

$$\alpha: (K_0(A), K_0(A)_+, [1_A], K_1(A)) \to (K_0(B), K_0(B)_+, [1_B], K_1(B)).$$

Then we have an isomorphism $h: A \to B$ such that $h_* = \alpha$.

Definition (H. Lin)

Let A be a unital simple C^* -algebra. Then A is said to have tracial (topological) rank zero if for any $\varepsilon>0$, any finite set $\mathcal{F}\subset A$ and any nonzero positive element $a\in A$, there exists a finite dimensional C^* -subalgebra $B\subset A$ with $\mathrm{id}_B=p$ such that:

- (1) $||px xp|| < \varepsilon$ for all $x \in \mathcal{F}$.
- (2) $pxp \in_{\varepsilon} B$ for all $x \in \mathcal{F}$.
- (3) $[1-p] \leq [a]$, i.e. there is a projection $q \in \overline{aAa}$ and a partial isometry $v \in A$ such that $v^*v = 1 p$ and $vv^* = q$.

Theorem (H. Lin)

Let A and B be unital separable simple C^* -algebras with tracial rank zero which satisfy the UCT. If there is an order isomorphism $\alpha: (K_0(A), K_0(A)_+, [1_A], K_1(A)) \to (K_0(B), K_0(B)_+, [1_B], K_1(B))$. Then there exists $h: A \to B$ such that $h_* = \alpha$.

Theorem (H. Lin and N. C. Phillips)

Let X be an infinite compact metric space with finite covering dimensional and let $\alpha\colon X\to X$ be a minimal homeomorphism, the associated crossed product C*-algebra $A=C(X)\rtimes_{\alpha}\mathbb{Z}$ has tracial rank zero whenever the image of $K_0(A)$ in Aff(T(A)) is dense.

Theorem (A. S. Toms and W. Winter)

Let $\mathcal C$ denote the class of C^* -algebras having the following properties:

- (1) every $A \in \mathcal{C}$ has the form $C(X) \rtimes_{\alpha} \mathbb{Z}$ for some infinite, compact, finite dimensional, metrizable space X and minimal homeomorphism $\alpha: X \to X$;
- (2) the projections of every $A \in \mathcal{C}$ separate traces. If $A, B \in \mathcal{C}$ and there is a graded ordered isomorphism $\phi: K_*(A) \to K_*(B)$, then there is a *-isomorphism $\Phi: A \to B$ which induces ϕ .

α -simple action on C^* -algebras

- We don't know what happen when C^* -algebras are neither commutative nor simple.
- In this talk, we consider the following case: let X be a Cantor set, let A be a unital separable simple amenable C^* -algebra with $\operatorname{TR}(A\otimes M_{p^\infty})\leq 1$ which satisfies the Universal Coefficient Theorem, we consider the C^* -algebra C(X,A), all continuous functions from X to A. When A is isomorphic to $\mathbb C$, it is just the Cantor set case. When C(X,A) is not isomorphic to $\mathbb C$, C(X,A) is neither commutative nor simple.

α -simple action on C^* -algebras

Definition

Let X be a compact metric space and let A be a C*-algebra, we say a map

 $\beta: X \to \operatorname{Aut}(A)$ is strongly continuous if for any $\{x_n\}$ with $d(x_n,x) \to 0$ when $n \to \infty$, we have $\|\beta_{x_n}(a) - \beta_x(a)\| \to 0$ for all $a \in A$.

Lemma

Let X be a compact metric space, let A be a unital simple C*-algebra and $\alpha \in \operatorname{Aut}(C(X,A))$. Then C(X,A) is α -simple if and only if there is a minimal homeomorphism σ from X to X and there is a strongly continuous map β from X to $\operatorname{Aut}(A)$, denote by x to β_x , such that $\alpha(f)(x) = \beta_{\sigma^{-1}(x)}(f(\sigma^{-1}(x)))$.

α -simple action on C^* -algebras

Lemma

Let X be an infinite compact metric space, let A be a unital simple C*-algebra and $\alpha \in \operatorname{Aut}(C(X,A))$. Then C(X,A) is α -simple if and only if the crossed product $C(X,A) \rtimes_{\alpha} \mathbb{Z}$ is simple.

• Let u be the unitary implementing the action of α in the transformation group C^* -algebra $C(X,A) \rtimes_{\alpha} \mathbb{Z}$, then $ufu^* = \alpha(f)$. For a nonempty closed subset $Y \subset X$, we define the C^* -subalgebra B_Y to be

$$B_Y = C^*(C(X, A), uC_0(X \backslash Y, A)) \subset C(X, A) \rtimes_{\alpha} \mathbb{Z}.$$

We will often let B denote the transformation group C^* -algebra $C(X,A) \rtimes_{\alpha} \mathbb{Z}$. If $Y_1 \supset Y_2 \supset \cdots$ is a decreasing sequence of closed subsets of X with $\bigcap_{n=1}^{\infty} Y_n = \{y\}$, then $B_{\{y\}} = \lim B_{Y_n}$.

Lemma

Let X be an infinite compact metric space, let A be a unital simple C*-algebra and $\alpha \in \operatorname{Aut}(C(X,A))$. If C(X,A) is α -simple, then for any $y \in X$, we have $B_{\{y\}}$ is simple.

Lemma

Let X be a Cantor set, let A be a unital separable simple amenable C*-algebra with tracial rank zero which satisfies the UCT (Universal Coefficient Theorem), and let $\alpha \in Aut(C(X,A))$. Suppose C(X,A) is α -simple. It follows that for any $y \in X$, the C*-algebra $B_{\{y\}}$ has tracial rank zero.

Lemma

Let X be a Cantor set, let A be a stably finite unital C^* -algebra and $\alpha \in Aut(C(X,A))$. If there is a minimal homeomorphism σ from X to X and a strongly continuous map β from X to Aut(A), denote by x to β_x , such that $\alpha(f)(x) = \beta_{\sigma^{-1}(x)}(f(\sigma^{-1}(x)))$. Let $B = C(X, A) \rtimes_{\alpha} \mathbb{Z}$, and let $y \in X$ and Y be a clopen neighborhood of $x \in X$. Suppose for any $\varepsilon > 0$ and any finite subset $\mathcal{F} \subset B$, there is a partial isometry $w \in B_{\{u\}}$ such that $w^*w=1_Y$, $ww^*=1_{\sigma^N(Y)}$ and $\|wf|_Y-f|_{\sigma^N(Y)}w\|<\frac{\varepsilon}{4}$ for all $f \in \mathcal{F}$. Then there is a projection $p \in B_{\{y\}}$ such that:

- (1) $||pa ap|| < \varepsilon$ for all $a \in \mathcal{F}$.
- (2) $pap \in pB_{\{u\}}p$ for all $a \in \mathcal{F}$.
- (3) $\tau(1-p) < \varepsilon$ for all $\tau \in T(B_{\{y\}})$.

Lemma

Let X be a Cantor set, let A be a stably finite unital C^* -algebra and $\alpha \in \operatorname{Aut}(C(X,A))$. If there is a minimal homeomorphism σ from X to X and a strongly continuous map β from X to $\operatorname{Aut}(A)$, denote by x to β_x , such that $\alpha(f)(x) = \beta_{\sigma^{-1}(x)}(f(\sigma^{-1}(x)))$, where $\beta_{\sigma^{-1}(x)}$ is approximately unitary equivalent to the identity map for all $x \in X$. Let $B = C(X,A) \rtimes_{\alpha} \mathbb{Z}$, and let $y \in X$ and Y be a clopen neighborhood of $x \in X$. Then for any $\varepsilon > 0$ and any finite subset $\mathcal{F} \subset B$, there is a partial isometry $w \in B_{\{y\}}$ such that $w^*w = 1_Y$, $ww^* = 1_{\sigma^N(Y)}$ and $\|wf\|_Y - f|_{\sigma^N(Y)}w\| < \frac{\varepsilon}{4}$ for all $f \in \mathcal{F}$.

For the case that TR(A) = 0

Theorem

Let X be a Cantor set, and let A be a unital separable simple amenable C*-algebra with tracial rank zero which satisfies the UCT. Let C(X,A) denote all continuous functions from X to A and α be an automorphism of C(X,A). Suppose that C(X,A) is α -simple and $[\alpha|_{1\otimes A}]=[id|_{1\otimes A}]$ in $KL(1\otimes A,C(X,A))$. Then $C(X,A)\rtimes_{\alpha}\mathbb{Z}$ is a unital simple C*-algebra with tracial rank zero.

For the case that $\mathsf{TR}(A \otimes M_{p^{\infty}}) \leq 1$

Theorem

Let X be a Cantor set, and let A be a unital separable simple amenable C*-algebra which is \mathcal{Z} -stable and satisfies $TR(A\otimes M_{p^\infty})\leq 1$ and the UCT. Let C(X,A) denote all continuous functions from X to A and α be an automorphism of C(X,A). Suppose that

- (1) C(X, A) is α -simple,
- (2) $[\alpha|_{1\otimes A}] = [\mathrm{id}|_{1\otimes A}]$ in $KL(1\otimes A, C(X,A))$,
- (3) $\tau(\alpha(1 \otimes a)) = \tau(1 \otimes a)$ for all $\tau \in T(C(X, A))$, and
- (4) $\alpha^{\ddagger}(\overline{1 \otimes u}) = \mathrm{id}^{\ddagger}(\overline{1 \otimes u})$ in $U_{\infty}(C(X,A))/CU_{\infty}(C(X,A))$.

Then $C(X,A) \rtimes_{\alpha} \mathbb{Z}$ is a unital simple C^* -algebra with $TR((C(X,A) \rtimes_{\alpha} \mathbb{Z}) \otimes M) < 1$

$$TR((C(X,A) \rtimes_{\alpha} \mathbb{Z}) \otimes M_{p^{\infty}}) \leq 1.$$

In this section, X denotes the Cantor set, \mathbb{T} denotes the circle, and \mathbb{T}^n denotes the n-dimensional torus.

For a compact Hausdorff space Y, Homeo(Y) is used to denote the set of all the homeomorphisms of Y.

As the Cantor set X is totally disconnected, we can write a homeomorphism of $X \times \mathbb{T}^n$ as $\sigma \times \varphi(\text{the skew product form})$, with $\sigma \in \text{Homeo}(X)$ and $\varphi : X \to \text{Homeo}(\mathbb{T}^n)$ being continuous, and

$$\sigma\times\varphi:X\times\mathbb{T}^n\to X\times\mathbb{T}^n$$

defined by

$$(x, t_1, t_2, \ldots, t_n) \rightarrow (\sigma(x), \varphi(t_1, t_2, \ldots, t_n)).$$

For the case that the cocycles take values in rotation groups, we can further express $\sigma \times \varphi$ as

$$(X \times \mathbb{T} \times \mathbb{T} \times \dots \times \mathbb{T}, \sigma \times R_{\xi_1} \times R_{\xi_2} \dots \times R_{\xi_n})$$
, with $R_{\xi_n}: X \to \mathbb{T}$ continuous, and

$$\sigma \times R_{\xi_1} \times R_{\xi_2} \cdots \times R_{\xi_n} : X \times \mathbb{T}^n \to X \times \mathbb{T}^n$$

defined by

$$(x, t_1, t_2, \dots, t_n) \to (\sigma(x), t_1 + \xi_1(x), t_2 + \xi_2(x), \dots, t_n + \xi_n(x)).$$

Lemma

If $(\sigma \times R_{\xi_1} \times R_{\xi_2} \cdots \times R_{\xi_n}, X \times \mathbb{T}^n)$ is minimal, then for any $y \in X$, $B_{\{y\}}$ has tracial rank one.

Theorem

Let $X \times \mathbb{T}_1 \times \cdots \times \mathbb{T}_n$ to denote the product of the Cantor set and n dimensional torus. Let $\sigma \times R_{\xi_1} \times \cdots \times R_{\xi_n}$ be a minimal homeomorphism on $X \times \mathbb{T}_1 \times \cdots \times \mathbb{T}_n$. Let B be the crossed product C^* -algebra $C^*(\mathbb{Z}, X \times \mathbb{T}_1 \times \cdots \times \mathbb{T}_n, \sigma \times R_{\xi_1} \times \cdots \times R_{\xi_n})$. Then $TR(B) \leq 1$.

Thank you!

